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elementary excitations which include the anomalous excitation spectrum. For T
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for T < 0.3 K the temperature variations of four coefficients of the second
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viscosity show a T -dependence, which is due to the three-phonon processes
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-i
liquid helium at low momenta and low temperatures. The T -dependence also

appears in the first viscosity of bulk and thin liquid helium, which is based
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1. Introduction

Recently, the temperature variations of various sound propagations have

been an important subject in the studies of liquid 3He,1 4He,2 3He- 4He

mixtures 3 and solutions of 3He in liquid 4He,4 because their properties are

closely related to the exitation spectrum of liquid 3He and 4he, which can

5determine the transport coefficients through the kinetic equations. It is

well known that at low temperatures and low pressures the thermal properties

of superfluid helium are not determined mainly by the rotons but rather by the

low-momentum acoustic phonons. These phonons do not possess the normal

dispersion relation, but instead exhibit an anomalous excitation spectrum. In

fact, these two cases are quite different in microscopic processes. The

former contributes to four-phonon processes (4PP) while the latter is governed

by three-phonon processes (3PP).

Recently, Andreev and Khalatnikov have evaluated the temperature

variation of first sound, and Singh and Prakash 7 have used the retarded

single-particle Green's function for a weakly-interacting Bose gas to obtain

the first sound by using the wrong normal dispersion relation. However, in a

8
recent paper we have developed the Landau-type elementary excitation

spectrum, which is anomalous phonon-like at low momenta and roton-like at high

momenta in two- and three-dimensional liquid helium. Starting with this

elementary excitation, we have successfully derived and explained not only the

various sounds9 and sound attenuations,1 0 but also thermal conductivity and

viscosity1 2 in partly one-, two- and three-dimensional liquid 4He .

Regarding the evaluation of first and second sound, 13 we have used a new

approach, which takes into account a collision term in the Boltzmann equation,

and have obtained first and second sound simultaneously. We reported that the

second sound in thin helium films is approximately 2" times the first sound
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velocity in the low-temperature and low-frequency limit. At low frequencies

such that w r << 1, where w is the sound frequency and r is the

characteristic time, we can make use of a hydrodynamical approach to sound

propagation. However, for the opposite case of w r >> 1, it is better to use

the kinetic equations. In this collisionless region the first and second

sound obtained in superfluid hydrodynamic equations are involved in the

attenuation coefficients, which contain the four coefficients of second

viscosity, i.e., I' 2' 3 and 4 These four coefficients play a very

important role in the investigation of sound attenuation in bulk liquid

helium. In the bulk case, the attenuation of second sound depends on all four

viscosity coefficients together. However, the term which generally contains

the thermal conductivity strongly affects the attenuation.

Recently, we have adopted the Landau and Khalatnikov theory to derive

11 .12the thermal conductivity and viscosity for three ranges of temperature,

T < 0.3 K, 0.3 K < T < 0.8 K and T > 0.8 K, in which the scattering depends on

the nature of interactions between elementary excitations. For T < 0.3 K it

is important to note that the 3PP do not affect the thermal conductivity but

cause the viscosity to have a T l-dependence, which was not proven by Landau

and Khalatnikov's results. The 4PP and phonon-roton scattering govern the

whole mechanism in the range of temperature 0.3 K < T < 0.8 K, and for T >

0.8 K the 5PP and the phonon-roton scattering contribute mostly to the

transport coefficients.

The main purpose of the present paper is to evaluate the four

coefficients i' 2' % and 4 of the second viscosity as a function of

temperature by solving the superfluid hydrodynamics for the above temperature

ranges through the theory of the kinetic phenomena developed by Khalatnikov,
1 4

and especially for T < 0.3 K we will investigate the temperature variation of
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the four viscosity coefficients. Throughout this paper we will use the two-

dimensional elementary excitation spectrum obtained by the microscopic ring-

8
diagram approximation,

E(p) - cop l + 7p2  Sp4 + ... ] , (1.1)

(P-?0 )
2

E(P) - A+ , (1.2)2,u 0

where p and P are phonon and roton momenta, respectively, c0 is the sound

velocity at absolute zero temperature, 7 and 6 are positive constants which

can be determined by the potential parameters, and A, P0 and M0 are the roton

parameters. Here, we have adopted a soft potential with a Lennard-Jones-type

tail which helps to make a smooth connection between the attractive part and a

8
soft repulsive core:

V 0 r < a

O(r) - (1.3)

E0( )I2_-(A ) , r > a

In this paper we define the liquid helium film as two-dimensional --

less than three atomic layers, namely one statistical layer of 3.6 A -- and

neglect substrate effects. In Sec. 2, to obtain the temperature variation of

the viscosity coefficients in various processes. we will investigate the

absorption and emission processes between elementary excitations through the

collision integral equations, and we will solve the superfluid hydrodynamic

equations to obtain four coefficients of the second viscosity in Sec. 3.
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Finally, in Sec. 4 we will give the results and discussion together with the

thermodynamic properties in terms of a table and graphs.

2. Absorption and emission of phonons and rotons.

To describe the interactions between elementary excitations which cause

liquid helium to make a transition from one state to another, we can consider

generally three collision processes: (a) emission or absorption of phonons,

(b) transformation of phonons into rotons and vice versa, and (c) emission or

absorption of rotons. In addition, we have the 3PP, 4PP and 5PP. In the case

of (c) the energy of one roton would have to be at least 2A, such that it can

decay into two rotons each with energy of about A. However, this kind of

6.
three-roton process is highly improbable, so that we may neglect it.

Therefore, from now on, we only take into account the 3PP and 5PP and

transformations of phonons into rotons and vice versa.

We consider first the 3PP (P2 + p P )  Since the total number of

phonons traveling in a given direction is changed by the small-angle 3PP, the

distribution function, which depends on the chemical potential a', can be

written as

n - [exp(a'+pc)/kBT - -] (2.2)

The difference between Eq. (2.2) and the equilibrium distribution function no

can be expanded in a power series to give

Sn - n - n0 - n0 (n0+l) a,' (2.3)
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The collision integral J3pp(n) and the kinetic coefficient r3p P are related to

each other through

k T 3PP (n) 2- a (2.4)
(21rX)

and the collision integral J 3pp(n) obtained in the second quantization

method is given by

j3p(n) - - 0 (u+I) 2 JPp 2p 6n(nplO -n )6 (Ef-E i) 2d  , (2.5)

where u is Gruneisen's constant, and n represents the equilibrium
Pio

distribution function for the phonons with momentum pi. Performing the

integration for Eq. (2.5) over momentum space, we obtain

2'3!C(2)C(3)(u+l) 2 k Ti (2.6)3pp(n)pdp - 3 Fa -) (268irH'fp0  Co

Comparing Eqs. (2.4) and (2.6), we can easily obtain the kinetic coefficient

F3pP for the 3PP as

2!3!C(2)((3)(u+l) 2  5
r3PP 167r 2 ,5 6 (kBT) (2.7)

167r p0 ( co

As for the 4PP case, the direction of momenta of the colliding particles

is not changed in the 5PP case. The calculation of the transition matrix

elements by second-order perturbation theory is very complicated, and some
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terms contain vanishing denominators under the condition Y - 0 in Eq. (1.1)

and collinear scattering. The 5PP has maximum probablity in small-angle

scattering and leads to equilibrium for the phonons in the direction of

motion. Instead of these tedious calculations using second-order perturbation

theory, we make use of the kinetic coefficient given by Landau and

Khalatnikov
1 5 to obtain the r5p P ar

I I

7
r5p P - aT (2.8)

Here, a is constant which can be determined experimentally by the attenuation

coefficient of ultrasonic waves.

Now we consider the transformations of phonons into rotons and vice

versa. When energetic phonons with energy on the order of A collide with

rotons (Pl + P2 3 + P4)' where p and P represent the phonon and roton

momenta, respectively, the transformation can occur. Therefore, a phonon has

at least a very large energy A, and the interactions between phonons and

rotons are very similar to that of the scattering between rotons. Adopting

15
Landau and Khalatnikov's assumption, we may take the interactions between a

roton and phonon to be a 6-function potential,

V - V 0 6(r 1 -r 2 ) , (2.9)

where V0 is an interaction constant, and r1 and r2 are the position vectors of

the phonons and rotons, respectively.

The rate of change per unit time in the roton number due to the

transformation of rotons into phonons is given by
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-( r 2 ) ' 2.10'

r 1JJJ41 2 3 2r~ (n N (N +1)(N +1) - (n 1 )(N +1)N N )dw dpd2(.0

where n. and N. are the distribution functions with momenta p. and

respectively. dw is the differential decay rate for the transformation of

phonons and rotons with momenta p1 and P2 into two rotons with momenta P3 and

P4 and is given by

-2_ ,VFi2 S(El + E- E 3 - E4 ) dP 3 dP4  (2.11)d1 22 3Ii)
(27r))4

where IVIFI is the transition matrix element, and E. and E. are the phonon and

roton energies, respectively. Combining Eq. (2.10) with (2.11), we get

Nr ( - nN 2(N3+1)(N 4+1) (n1+1)(N 2+1)N3N4)

2r 2 ) dP#dP2dP dP

x ,- IVIFL 1 (EI + E2 - E3  E) 8 (2.12)

Now we construct the symmetrized pairwise plane wave over incoming and

outgoing phonons and rotons as

( 1 -r .P1+Pr 2 + (plr 2+P2 Ir)
O(P 1,P2 ) " [e + + e ]

(2.13)

1 (P- 1 [ -r 2P3e+P4 "(2 ) e(P 3 r22 +P 4 . r1 )-(3 + 4 72 (



and combining Eq. (2.13) with (2.11), we can obtain the transition matrix

elements as

VIF - 2V0 0 f eX(P 3+P4 pP1 -P . d2r1  (2.14)

Here, dO represents the area element. Making use of the 6-function identity

together with Eq. (2.14), we obtain

f ex e(PB3+PA-PI P 2 )'-r~ (.5

6(P3+P4 -Pl-P 2) = (2 2 M 1  (2.15)

and performing the integration over momentum space, we get

jVIF, 2 dP2 2f- IV-I( 1N 41VoI (2.16)
(2i )2

As mentioned earlier, from the fact that the roton momentum P is almost the

same as that of the roton parameter P0 , the expansion of the roton

distribution function N as a function of chemical potential yields Eq. (2.12)

as

A r - 11 12 h 1 6 _ _2 _V o_2 _

kT 2 6  N3 N 4 0d 3d 4  (2.17)
r B c 0 (21rX()

where p r and pph are the roton and phonon chemical potentials, respectively,

and performing the integration over momentum space we arrive at



10

rkT 3 2 
(2.18)

Bc o

where N is the number density of roton given by
r

rjkBTl 1 P 0  -A/kBT

N -[-,m 2e .(2.19)

The rate of change per unit time in the roton number can bc expressed in terms

of the kinetic coefficient P as
ph-r

N -rph-r( 'r - ph) (2.20)

Comparing Eqs. (2.20) and (2.18), we can deduce the kinetic coefficient rph-r

for the transformation of rotons into phonons and vice versa as

2 N24AV 01 N

p3h -r  3c2kBT  
(2.21)

0OB

Since V0 is not known experimentally, we can simply rewrite Eq. (2.21) as

r - b e 2A/kBT (2.22)ph -r

where b is a constant which contains several parameters of the elementary

excitation and can be determined experimentally by the ultrasonic attenuation.
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3. Coefficients of two-dimensional second viscosity

When liquid 4He is in its equilibriam state, the distribution functions

for phonons and rotons are expressed by

n exp (E - p.(v -vn(31
E "(s "n )  -li

Oph - [exp{ kBT 1 ] (3.1)

E r-p(v -vr k B-1nor -[exp( kBT }](3.2)

However, due to the presence of the energy dissipation, nonequilibrium effects

appear in energy and momentum conservations, superfluid flow, energy flux, and

especially entropy which is not conserved but increases (entropy increases in

order to determine the unknown dissipation coefficients). Taking into account

all of these conditions, we can accumulate all these effects within the

following two hydrodynamic equations which concern

+ VP + v Vj + (j Ps )Vv + (j'V)v + (v nV)(j-pv
8t s s n s n s

- V( 1V(j-pvm) + {2 Vvn (3.3)

-.2vT v2
+ Vt -) "( (  p )" + Vv n  (3.4)

at23 n 4n

Here, j and p are the momentum and mass density, P is the pressure, A is the

chemical potential of the liquid helium, and I' 2' 3 and 4 are the
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coefficients of second viscosity. The coefficients I and 4 are equal

according to the Onsager's reciprocity principle.

It is obvious that the coefficients of the second viscosity depend on

the variations of the temperature and thermodynamic functions, and thus the

number of phonons and rotons are changed by the various processes that we have

mentioned earlier. Let Nph and Nr be the number of phonons and rotons per

unit area, respectively, and jph and A r be their chemical potentials. When

the system deviates slightly from its equilibrium state, N and N are'r ph

changed in time and try to return to their values in the equilibrium state.

We assume that the nonequilibrium distribution function n deviates very

slightly from equilibrium, i.e., small deviations of the density and entropy

can be determined by the time derivatives of the phonon and roton numbers, Nph

and Nr, in the expansion of the chemical potential. Since the phonons and

rotons take part in normal motion with velocity v n, neglecting the quadratic

effects and taking only linear terms in Aph and Mr' we can obtain the

following equations:

N+ NVv -- - u+- ,~ (3.5)
S rr n 7rrr + 7ph-rph

+ +N Vv 'Y 7y 1(36ph ph n ph-r pp ph (3.6)

The kinetic coefficients on the right-hand sides of Eq. (3.5)-(3.6) are

symmetric in the indices r and ph.

Since the rate of change per init time in the density p and entropy S

can be expressed by the continuity equations

P +V.j- , (3.7)
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+ sV m 0 , (3.8)

substitution of Eqs. (3.7)-(3.8) into (3.5)-(3.6) yields

aN aN _ N aN

apr 8 . r Vv + -C -v r - (3.9)n OP n Op n

8N aN aN

hs Vv +nliV- - 'OV- (3.10)
ph cOp as n Op n Op n

Combining Eqs. (3.9)-(3.10) with Eqs. (3.5)-(3.6), we can express N and N• " 'r ph

in terms of p and S by

3N aN aN__r -( _ n - Nr  . r S  r --
SV(jPv ) + (N - aS - ) rv r r P + - p A (3.11)

n r an "rrr ph-r ph

aN 8N
-~ h 2 (.pn) + (N SS - Lp)v -ph r~ -ppj
p ph a 85 ap n h- r pp ph (3.12)

The kinetic coefficients 7 rr' - and y may be replaced as

r3rp, Fsp p , Fph-r and F 3pp, which are the kinetic coefficients of the three-

roton process (3RP) , 5PP, phonon-roton interaction and 3PP, respectively, as

follows

Yrr - r3rp + rph-r

7r-ph - 7ph-r " rph-r (3.13)

pp 5pp + PP +ph-r
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Since r3r p is very small compared to the other kinetic coefficients, 1 7 we may

neglect it. Substituting Eq. (3.13) into Eqs. (3.1l)-(3.12) and solving for

Aph and M r) we obtain
ph rN

1 LN 8N jN -

Aph -3P + F5pP ( V(j-pvn) - (N- aS yp) VVn) (3.14)

r- + r ( V(jP-n) (N as S 8y p) VV n

1 N aN aN
+(ap ( V(jPVn) (Nr - S - ap) V n (3.15)

ph- r

where N - N + Nr ph"

In Eqs. (3.3)-(3.4) the pressure P and chemical potential A can be

expressed in terms of the chemical potentials ph and Mr as

V P - V (+ - ; Ah P )  
I

aAr r al h P h

(3.16)

au- + au
VA --V~aA~rr alAph 1p

Solving Eqs. (3.14)-(3.16) together with Eqs. (3.3)-(3.4) for the coefficients

l' 2' 3 and 4 of the second viscosity, we obtain

1(T)  1 . (LP P )N 1 _P 0Nr (3.17)
r 3 pP + 5pP r ph ph-r r -P (

+5 r ph p ph-r p
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aN aN
x (Nr + aS o r (3.18)

aN
(T) - + (3.19)r3pP + r5pP  8 r  Opph ap Fph-r a0r ap

r( T ) - 1 -- a
43PP +5PP a r amph ph-r r

aN aN
x (N r - as r - p )  - (3.20)

Making use of the thermodynamic identities

dE - TdS + udp -Nrdr N-N dp h  (3.21)
0 r r ph ph

P - -E0 + ST +p (3.22)

we can transform Eqs. (3.17)-(3.20) into the following forms:

aN aN aN aN aN
( r N(N - is - ___ S(N -s )1 -F3p P + r5PP ap as -p rph-r ap r as op

(3.23)

aN aN aN 3N
(N - -) Ss -+--p ) (3.24)

2 r + rS -as+ ph- r a apF3p P  Fpph-ro

3(T) N (3.25)
3pP 5PP I ph-r
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1 aN 3N aN aN
(T) -- Pp+ ( -- - - 1 ra4T r "3PP + 5PP OP as ap Fph-r ap

aN 3N
x (Nr  -rs rp

--as) T) (3.26)

Here, 1 and (4 are shown co be equal as expected from Onsager's reciprocity

symmetry relation for the kinetic coefficients.

As we have recently proven, near T - 0 K the 3PP are the main influence

on the first viscosity coefficient in 2D and 3D1 2 liquid helium, which was
10

not shown by Landau and Khalatnikov, and in ultrasonic sound attenuation the

3PP also influence the coefficients of second viscosity near T - 0 K.

Therefore, to investigate the contribution of the 3PP to the coefficients of

the second viscosity, we should consider the 3PP effects separately from other

processes. To do this, we only keep the terms for the 3PP in Eqs. (3.3)-

(3.12) and then obtain

1 INN 8N--
Jph - r3pP ap - as s n

The pressure P and chemical potential u in Eqs. (3.3)-(3.4) and Eq. (3.6),

which depend only on the phonon chemical potential, can be written as

VM 7h V] (3.28)7p--ap ph pha phh

Therefore, with the use of the thermodynamic identities Eqs. (3.21)-(3.22), we

can obtain the contributions from the 3PP to the coefficients of the second



viscosity in Eq. (3.23)-(3.26), together with Eqs. (3.27)-(3.28), near

T - 0 K as

IN 3N aN
p aS [ N's (3.29)

I(T) ap Nph o - p

2(r I !PN aNh

p](T) - 1 8 (N 2 (3.30)

£3 (T) - 1 ph2(3.31)

FP  ' aN N
4(T) - - aph p) 8h8 ) (3.32)

4 r3p P  ap ph aS S

Here, 1 and 4 are equal and thus satisfy Onsager's reciprocity symmetric

principle.

4. Results and discussion

In the previous sections we have derived the kinetic coefficients for

two temperature regions, and making use of these coefficients we have obtained

the four coefficients of the second viscosity. For T < 0.3 K the

contributions of the 3PP to the coefficients are most important, and for T >

0.3 K we may neglect the contribution from the 3PP. Therefore, dropping the

r3p P terms in Eqs. (3.23)-(3.26), these coefficients of the two-dimensional

16
(2D) second viscosity are reduced to those of the bulk case, except for

differences between 2D and 3D thermodynamic dimensionalitv. Therefore, we

will not write the coefficients here repeatedly for T > 0.3 K.
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To analyze concretely the four coefficients of the 2D second viscosity
8

for T < 0.3 K, we use the following two-dimensional thermodynamic functions:

kB3c(3) 2 5! (5)B1  4

S (T) - 2 (rk T) 2(k T) + .. . (4.1)
ph 27rf 2 c2 B c5 B

c o  c

MOk B T k B Po /k T
S r(T)- 2 I T (2 +k T) e- B (4.2)

kT
Nph(T) - 2. fc0j (4.3)

Here, B1 - + 16 (3a-v 0 )]/
2c0 , n is the number density of 2D liquid

helium, and the other parameters are given in Eq. (1.3). To see the

temperature variation of the coefficients numerically, we adopt the parameters

which are deduced from the specific data of Bretz et al.
1 8  To explain the

various experimental data, 9 '10 we have made use of these parameters

successfully, which are listed in Table I, where q0 - P0 /Y. With this choice,

we have obtained the sound velocity c0 - 164.4 m/s at absolute zero
10

temperature. However, from the analysis of the sound attenuation, we

obtained c0 - 84.06 m/s, which is very closa to the experimental value of 76 ±

2 m/s given by Wushburn et al. 1 9 and the parameters u, a and b in Eqs. (2.7),

20 43 15 49 21
(2.8) and (2.22) are assumed to be 1.8, 1 x 10 5 and 4 x , as used

by previous workers for the bulk case. With the use of the above parameters

and those in Table I, the numerical expressions for the kinetic coefficients

are given by

39 5
r3P -l1.24 x10 T ,(4.4)



19

£5pP - 1.0 x 103 T (4.5)

49 -8.24/Tph-r 4x0 e (4.6)

Through Eqs. (4.4)-(4.6) we see that the powers of the temperatures in the

kinetic coefficients vary according to the interactions between elementary

excitations.

Substituting Eqs. (4.1)-(4.4) into Eqs. (3.29)-(3.32), we obtain the

temperature variation of the four coefficients of the 2D second viscosity as

follows:

2112 ) + 3.59 x 10 .2 T3/2e 4.12/T
4.2 4 -1 2+ 7 T 3.5 x1 T e+3.6]10- 3 T r - 3 4.12 16.97) + 7.19 X10- 2 T3/2 e4.12/T

(4 + T T )

(4.7)

3 4.12 . -2T 3/2 e4.12/T)
12(T -.2 x -3 T-1112(+ T 3.59 2

2.23 T [1 - 3 4.12 16.97 7.19 xl0-2 T3/2e 412/T + 3.6]

4+-- T 2

(4.8)

-3(T) 8.39 x 105 T "I  (4.9)

4 -(T) (T) (4.10)

'When T drops to less than 0.3 K, the second (fractional) term inside the

square brackets in Eqs. (4.7) and (4.8) approaches unity, and these equations

are reduced to the following two equations, respectively:
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(T) - 1.555 x 10 T -1 (4.11)

p2 (T) - 2.890 x i0-12 T " 1 (4.12)

All four coefficients have a T -dependence, which is the same as that of the

coefficient of the first viscosity. Here, we note that there are generally

thirteen independent dissipative coefficients,22,23 but we only consider the

above five coefficients. Moreover, we will not discuss the pressure and

frequency variations of the coefficients of the second viscosity.

We have already shown that the 2D thermal conductivity and first

viscosity of thin liquid helium films are all positive. We can easily

confirm that the four coefficients of second viscosity are all positive. For

2 2 _ -3 -2. 7
T - 0.05 K we find that 2 < ,2 3' where 2 1 10 and _2 3 - 10

However, as the temperature increases to about 0.1 K, the equality then holds,

2
i.e., 1i =  23" Comparing the order of magnitude for the four coefficients,

we can write 3 >  l > 2' and all four coefficients have larger values than

that of the coefficient of the first viscosity.

In conclusion, the coefficients of the second viscosity in two-

dimensional thin helium films behare like those of bulk liquid helium for T >

0.3 K, while for T < 0.3 K, the four coefficients of the second viscosity

exhibit a T -dependence like that of the first viscosity, which is due to the

3PP originating from the anomalous excitation spectrum of two-dimensional

liquid helium at low momenta and low temperatures.
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Table I. Theoretical parameters.

n (A) A/k B (K) qO (A1) A0C 0 (m/s)

2.79 x 10- 4.12 1.02 0.75 '-He 164.4
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Figure Caption

Figure 1. Temperature variation of the coefficients ' 1 2' 3 and 4 of

the second viscosity and the coefficient q of the first viscosity

in thin helium film.
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